Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell ; 187(6): 1440-1459.e24, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38490181

RESUMEN

Following the fertilization of an egg by a single sperm, the egg coat or zona pellucida (ZP) hardens and polyspermy is irreversibly blocked. These events are associated with the cleavage of the N-terminal region (NTR) of glycoprotein ZP2, a major subunit of ZP filaments. ZP2 processing is thought to inactivate sperm binding to the ZP, but its molecular consequences and connection with ZP hardening are unknown. Biochemical and structural studies show that cleavage of ZP2 triggers its oligomerization. Moreover, the structure of a native vertebrate egg coat filament, combined with AlphaFold predictions of human ZP polymers, reveals that two protofilaments consisting of type I (ZP3) and type II (ZP1/ZP2/ZP4) components interlock into a left-handed double helix from which the NTRs of type II subunits protrude. Together, these data suggest that oligomerization of cleaved ZP2 NTRs extensively cross-links ZP filaments, rigidifying the egg coat and making it physically impenetrable to sperm.


Asunto(s)
Glicoproteínas de la Zona Pelúcida , Humanos , Masculino , Semen , Espermatozoides/química , Espermatozoides/metabolismo , Zona Pelúcida/química , Zona Pelúcida/metabolismo , Glicoproteínas de la Zona Pelúcida/química , Glicoproteínas de la Zona Pelúcida/metabolismo , Óvulo/química , Óvulo/metabolismo , Femenino
2.
MicroPubl Biol ; 20242024.
Artículo en Inglés | MEDLINE | ID: mdl-38525126

RESUMEN

ORF3a is an accessory protein expressed by all human pathogen coronaviruses and is the only accessory protein that strongly affects viral fitness. Its deletion reduces severity in both alpha- and beta-coronaviruses, demonstrating a conserved function across the superfamily. Initially regarded as a non-selective cation channel, ORF3a's function is now disputed. Here, we show that ORF3a from SARS, but not SARS-CoV-2, promotes potassium conductance in a yeast model system commonly used to study potassium channels. ORF3a-mediated potassium conductance is also sensitive to inhibitors, including emodin, carbamazepine, and nifedipine. This model may be used in future studies on ORF3a and related proteins.

3.
Elife ; 122023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37787392

RESUMEN

After fertilization, maternally contributed factors to the egg initiate the transition to pluripotency to give rise to embryonic stem cells, in large part by activating de novo transcription from the embryonic genome. Diverse mechanisms coordinate this transition across animals, suggesting that pervasive regulatory remodeling has shaped the earliest stages of development. Here, we show that maternal homologs of mammalian pluripotency reprogramming factors OCT4 and SOX2 divergently activate the two subgenomes of Xenopus laevis, an allotetraploid that arose from hybridization of two diploid species ~18 million years ago. Although most genes have been retained as two homeologous copies, we find that a majority of them undergo asymmetric activation in the early embryo. Chromatin accessibility profiling and CUT&RUN for modified histones and transcription factor binding reveal extensive differences in predicted enhancer architecture between the subgenomes, which likely arose through genomic disruptions as a consequence of allotetraploidy. However, comparison with diploid X. tropicalis and zebrafish shows broad conservation of embryonic gene expression levels when divergent homeolog contributions are combined, implying strong selection to maintain dosage in the core vertebrate pluripotency transcriptional program, amid genomic instability following hybridization.


Asunto(s)
Cromosomas , Pez Cebra , Animales , Xenopus laevis/genética , Pez Cebra/genética , Cromatina , Genoma , Regulación del Desarrollo de la Expresión Génica , Mamíferos/genética
4.
J Gen Physiol ; 155(10)2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37561060

RESUMEN

Fertilization of an egg by more than one sperm, a condition known as polyspermy, leads to gross chromosomal abnormalities and is embryonic lethal for most animals. Consequently, eggs have evolved multiple processes to stop supernumerary sperm from entering the nascent zygote. For external fertilizers, such as frogs and sea urchins, fertilization signals a depolarization of the egg membrane, which serves as the fast block to polyspermy. Sperm can bind to, but will not enter, depolarized eggs. In eggs from the African clawed frog, Xenopus laevis, the fast block depolarization is mediated by the Ca2+-activated Cl- channel TMEM16A. To do so, fertilization activates phospholipase C, which generates IP3 to signal a Ca2+ release from the ER. Currently, the signaling pathway by which fertilization activates PLC during the fast block remains unknown. Here, we sought to uncover this pathway by targeting the canonical activation of the PLC isoforms present in the X. laevis egg: PLCγ and PLCß. We observed no changes to the fast block in X. laevis eggs inseminated in inhibitors of tyrosine phosphorylation, used to stop activation of PLCγ, or inhibitors of Gαq/11 pathways, used to stop activation of PLCß. These data suggest that the PLC that signals the fast block depolarization in X. laevis is activated by a novel mechanism.


Asunto(s)
Calcio , Fertilización , Animales , Masculino , Fertilización/fisiología , Xenopus laevis/metabolismo , Calcio/metabolismo , Semen/metabolismo , Espermatozoides/metabolismo
5.
bioRxiv ; 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36778253

RESUMEN

Fertilization of eggs from the African clawed frog Xenopus laevis is characterized by an increase in cytosolic calcium, a phenomenon that is also observed in other vertebrates such as mammals and birds. During fertilization in mammals and birds, the transfer of the soluble PLCζ from sperm into the egg is thought to trigger the release of calcium from the endoplasmic reticulum (ER). Injecting sperm extracts into eggs reproduces this effect, reinforcing the hypothesis that a sperm factor is responsible for calcium release and egg activation. Remarkably, this occurs even when sperm extracts from X. laevis are injected into mouse eggs, suggesting that mammals and X. laevis share a sperm factor. However, X. laevis lacks an annotated PLCZ1 gene, which encodes the PLCζ enzyme. In this study, we attempted to determine whether sperm from X. laevis express an unannotated PLCZ1 ortholog. We identified PLCZ1 orthologs in 11 amphibian species, including 5 that had not been previously characterized, but did not find any in either X. laevis or the closely related Xenopus tropicalis. Additionally, we performed RNA sequencing on testes obtained from adult X. laevis males and did not identify potential PLCZ1 orthologs in our dataset or in previously collected ones. These findings suggest that PLCZ1 may have been lost in the Xenopus lineage and raise the question of how fertilization triggers calcium release and egg activation in these species.

6.
J Biol Chem ; 298(8): 102264, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35843309

RESUMEN

TransMEMbrane 16A (TMEM16A) is a Ca2+-activated Cl- channel that plays critical roles in regulating diverse physiologic processes, including vascular tone, sensory signal transduction, and mucosal secretion. In addition to Ca2+, TMEM16A activation requires the membrane lipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). However, the structural determinants mediating this interaction are not clear. Here, we interrogated the parts of the PI(4,5)P2 head group that mediate its interaction with TMEM16A by using patch- and two-electrode voltage-clamp recordings on oocytes from the African clawed frog Xenopus laevis, which endogenously express TMEM16A channels. During continuous application of Ca2+ to excised inside-out patches, we found that TMEM16A-conducted currents decayed shortly after patch excision. Following this rundown, we show that the application of a synthetic PI(4,5)P2 analog produced current recovery. Furthermore, inducible dephosphorylation of PI(4,5)P2 reduces TMEM16A-conducted currents. Application of PIP2 analogs with different phosphate orientations yielded distinct amounts of current recovery, and only lipids that include a phosphate at the 4' position effectively recovered TMEM16A currents. Taken together, these findings improve our understanding of how PI(4,5)P2 binds to and potentiates TMEM16A channels.


Asunto(s)
Fosfatos , Fosfatidilinositol 4,5-Difosfato , Animales , Calcio/metabolismo , Canales de Cloruro/metabolismo , Fosfatos/química , Fosfatos/metabolismo , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Xenopus laevis/metabolismo
8.
MicroPubl Biol ; 20212021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33598639

RESUMEN

Fertilization of an egg by multiple sperm presents one of the earliest and most prevalent obstacles to successful reproduction. Eggs employ multiple mechanisms to prevent sperm entry into the nascent zygote. The fast block to polyspermy uses a depolarization to inhibit sperm entry. For some external fertilizers, fertilization and the fast block require actin polymerization. Here we explored whether the fast block to polyspermy in the external fertilizer, Xenopus laevis, requires actin polymerization. Inseminating in the presence of inhibitor cytochalasin B, here we demonstrate that actin polymerization is not required for the fast block to polyspermy in X. laevis.

9.
Nucleic Acids Res ; 49(1): e5, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33221877

RESUMEN

RNA sequencing (RNA-seq) is extensively used to quantify gene expression transcriptome-wide. Although often paired with polyadenylate (poly(A)) selection to enrich for messenger RNA (mRNA), many applications require alternate approaches to counteract the high proportion of ribosomal RNA (rRNA) in total RNA. Recently, digestion using RNaseH and antisense DNA oligomers tiling target rRNAs has emerged as an alternative to commercial rRNA depletion kits. Here, we present a streamlined, more economical RNaseH-mediated rRNA depletion with substantially lower up-front costs, using shorter antisense oligos only sparsely tiled along the target RNA in a 5-min digestion reaction. We introduce a novel Web tool, Oligo-ASST, that simplifies oligo design to target regions with optimal thermodynamic properties, and additionally can generate compact, common oligo pools that simultaneously target divergent RNAs, e.g. across different species. We demonstrate the efficacy of these strategies by generating rRNA-depletion oligos for Xenopus laevis and for zebrafish, which expresses two distinct versions of rRNAs during embryogenesis. The resulting RNA-seq libraries reduce rRNA to <5% of aligned reads, on par with poly(A) selection, and also reveal expression of many non-adenylated RNA species. Oligo-ASST is freely available at https://mtleelab.pitt.edu/oligo to design antisense oligos for any taxon or to target any abundant RNA for depletion.


Asunto(s)
Biología Computacional/métodos , Oligodesoxirribonucleótidos Antisentido/genética , ARN Mensajero/genética , ARN Ribosómico/genética , ARN/genética , Animales , Secuencia de Bases , Femenino , Perfilación de la Expresión Génica/métodos , Internet , Masculino , Oligodesoxirribonucleótidos Antisentido/metabolismo , Poli A/genética , Poli A/metabolismo , ARN/metabolismo , ARN Mensajero/metabolismo , ARN Ribosómico/metabolismo , Ribonucleasa H/metabolismo , Análisis de Secuencia de ARN/métodos , Xenopus laevis/embriología , Xenopus laevis/genética , Pez Cebra/embriología , Pez Cebra/genética
10.
Elife ; 92020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33263540

RESUMEN

Imaging sperm as they travel through the female reproductive tract has revealed new details about fertilization at the molecular level.


Asunto(s)
Canales de Calcio , Capacitación Espermática , Animales , Femenino , Fertilización , Masculino , Ratones , Espermatozoides
11.
PLoS Biol ; 18(7): e3000811, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32735558

RESUMEN

One of the earliest and most prevalent barriers to successful reproduction is polyspermy, or fertilization of an egg by multiple sperm. To prevent these supernumerary fertilizations, eggs have evolved multiple mechanisms. It has recently been proposed that zinc released by mammalian eggs at fertilization may block additional sperm from entering. Here, we demonstrate that eggs from amphibia and teleost fish also release zinc. Using Xenopus laevis as a model, we document that zinc reversibly blocks fertilization. Finally, we demonstrate that extracellular zinc similarly disrupts early embryonic development in eggs from diverse phyla, including Cnidaria, Echinodermata, and Chordata. Our study reveals that a fundamental strategy protecting human eggs from fertilization by multiple sperm may have evolved more than 650 million years ago.


Asunto(s)
Fertilización , Oocitos/metabolismo , Zinc/metabolismo , Ambystoma mexicanum , Animales , Femenino , Hidrozoos , Masculino , Strongylocentrotus purpuratus , Xenopus laevis , Pez Cebra
12.
Mol Reprod Dev ; 87(3): 350-357, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31087507

RESUMEN

Fertilization of an egg by multiple sperms, polyspermy, is lethal to most sexually reproducing species. To combat the entry of additional sperm into already fertilized eggs, organisms have developed various polyspermy blocks. One such barrier, the fast polyspermy block, uses a fertilization-activated depolarization of the egg membrane to electrically inhibit supernumerary sperm from entering the egg. The fast block is commonly used by eggs of oviparous animals with external fertilization. In this review, we discuss the history of the fast block discovery, as well as general features shared by all organisms that use this polyspermy block. Given the diversity of habitats of external fertilizers, the fine details of the fast block-signaling pathways differ drastically between species, including the identity of the depolarizing ions. We highlight the known molecular mediators of these signaling pathways in amphibians and echinoderms, with a fine focus on ion channels that signal these fertilization-evoked depolarizations. We also discuss the investigation for a fast polyspermy block in mammals and teleost fish, and we outline potential fast block triggers. Since the first electrical recordings made on eggs in the 1950s, the fields of developmental biology and electrophysiology have substantially matured, and yet we are only now beginning to discern the intricate molecular mechanisms regulating the fast block to polyspermy.


Asunto(s)
Membrana Celular/metabolismo , Canales Iónicos/metabolismo , Potenciales de la Membrana/fisiología , Oocitos/ultraestructura , Poliploidía , Transducción de Señal/fisiología , Interacciones Espermatozoide-Óvulo/fisiología , Animales , Femenino , Humanos , Masculino , Oocitos/metabolismo , Espermatozoides/metabolismo , Cigoto/metabolismo
13.
Trends Biochem Sci ; 44(10): 823-826, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31447243

RESUMEN

The Ca2+-conducting ion channel, CatSper, is expressed exclusively on the sperm flagellum and regulates sperm motility. A new study (Hwang et al., Cell, 2019) reveals that the pH-sensing and Ca2+-binding protein, EFCAB9, is a subunit of the CatSper channel and has a key role in triggering mammalian sperm to change their swimming at fertilization.


Asunto(s)
Calcio , Motilidad Espermática , Animales , Canales de Calcio , Humanos , Concentración de Iones de Hidrógeno , Masculino , Espermatozoides
15.
J Biol Chem ; 294(33): 12556-12564, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31266809

RESUMEN

Transmembrane member 16A (TMEM16A) is a widely expressed Ca2+-activated Cl- channel with various physiological functions ranging from mucosal secretion to regulating smooth muscle contraction. Understanding how TMEM16A controls these physiological processes and how its dysregulation may cause disease requires a detailed understanding of how cellular processes and second messengers alter TMEM16A channel gating. Here we assessed the regulation of TMEM16A gating by recording Ca2+-evoked Cl- currents conducted by endogenous TMEM16A channels expressed in Xenopus laevis oocytes, using the inside-out configuration of the patch clamp technique. During continuous application of Ca2+, we found that TMEM16A-conducted currents decay shortly after patch excision. Such current rundown is common among channels regulated by phosphatidylinositol 4,5-bisphosphate (PIP2). Thus, we sought to investigate a possible role of PIP2 in TMEM16A gating. Consistently, synthetic PIP2 rescued the current after rundown, and the application of PIP2 modulating agents altered the speed kinetics of TMEM16A current rundown. First, two PIP2 sequestering agents, neomycin and anti-PIP2, applied to the intracellular surface of excised patches sped up TMEM16A current rundown to nearly twice as fast. Conversely, rephosphorylation of phosphatidylinositol (PI) derivatives into PIP2 using Mg-ATP or inhibiting dephosphorylation of PIP2 using ß-glycerophosphate slowed rundown by nearly 3-fold. Our results reveal that TMEM16A regulation is more complicated than it initially appeared; not only is Ca2+ necessary to signal TMEM16a opening, but PIP2 is also required. These findings improve our understanding of how the dysregulation of these pathways may lead to disease and suggest that targeting these pathways could have utility for potential therapies.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Canales de Cloruro/metabolismo , Activación del Canal Iónico , Potenciales de la Membrana , Fosfatidilinositol 4,5-Difosfato/metabolismo , Animales , Canales de Cloruro/genética , Xenopus laevis
17.
J Gen Physiol ; 150(9): 1239-1248, 2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-30012841

RESUMEN

The prevention of polyspermy is essential for the successful progression of normal embryonic development in most sexually reproducing species. In external fertilizers, the process of fertilization induces a depolarization of the egg's membrane within seconds, which inhibits supernumerary sperm from entering an already-fertilized egg. This fast block requires an increase of intracellular Ca2+ in the African clawed frog, Xenopus laevis, which in turn activates an efflux of Cl- that depolarizes the cell. Here we seek to identify the source of this intracellular Ca2+ Using electrophysiology, pharmacology, bioinformatics, and developmental biology, we explore the requirement for both Ca2+ entry into the egg from the extracellular milieu and Ca2+ release from an internal store, to mediate fertilization-induced depolarization. We report that although eggs express Ca2+-permeant ion channels, blockade of these channels does not alter the fast block. In contrast, insemination of eggs in the presence of Xestospongin C-a potent inhibitor of inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release from the endoplasmic reticulum (ER)-completely inhibits fertilization-evoked depolarization and increases the incidence of polyspermy. Inhibition of the IP3-generating enzyme phospholipase C (PLC) with U73122 similarly prevents fertilization-induced depolarization and increases polyspermy. Together, these results demonstrate that fast polyspermy block after fertilization in X. laevis eggs is mediated by activation of PLC, which increases IP3 and evokes Ca2+ release from the ER. This ER-derived Ca2+ then activates a Cl- channel to induce the fast polyspermy block. The PLC-induced cascade of events represents one of the earliest known signaling pathways initiated by fertilization.


Asunto(s)
Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Fertilización , Óvulo/metabolismo , Fosfolipasas de Tipo C/metabolismo , Animales , Femenino , Inositol 1,4,5-Trifosfato/metabolismo , Técnicas de Placa-Clamp , Xenopus laevis
18.
J Gen Physiol ; 150(9): 1249-1259, 2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-30012842

RESUMEN

In externally fertilizing animals, such as sea urchins and frogs, prolonged depolarization of the egg immediately after fertilization inhibits the entry of additional sperm-a phenomenon known as the fast block to polyspermy. In the African clawed frog Xenopus laevis, this depolarization is driven by Ca2+-activated Cl- efflux. Although the prominent Ca2+-activated Cl- currents generated in immature X. laevis oocytes are mediated by X. laevis transmembrane protein 16a (xTMEM16A) channels, little is known about the channels that contribute to the fast block in mature eggs. Moreover, the gamete undergoes a gross transformation as it develops from an immature oocyte into a fertilization-competent egg. Here, we report the results of our approach to identify the Ca2+-activated Cl- channel that triggers the fast block. By querying published proteomic and RNA-sequencing data, we identify two Ca2+-activated Cl- channels expressed in fertilization-competent X. laevis eggs: xTMEM16A and X. laevis bestrophin 2A (xBEST2A). By exogenously expressing xTMEM16A and xBEST2A in axolotl cells lacking endogenous Ca2+-activated currents, we characterize the effect of inhibitors on currents mediated by these channels. None of the inhibitors tested block xBEST2A currents specifically. However, 2-(4-chloro-2-methylphenoxy)-N-[(2-methoxyphenyl)methylideneamino]-acetamide (Ani9) and N-((4-methoxy)-2-naphthyl)-5-nitroanthranilic acid (MONNA) each reduce xTMEM16A currents by more than 70% while only nominally inhibiting those generated by xBEST2A. Using whole-cell recordings during fertilization, we find that Ani9 and MONNA effectively diminish fertilization-evoked depolarizations. Additionally, these inhibitors lead to increased polyspermy in X. laevis embryos. These results indicate that fertilization activates TMEM16A channels in X. laevis eggs and induces the earliest known event triggered by fertilization: the fast block to polyspermy.


Asunto(s)
Anoctamina-1/metabolismo , Fertilización , Óvulo/metabolismo , Xenopus laevis/metabolismo , Acetamidas , Ambystoma mexicanum , Animales , Bestrofinas/metabolismo , Canales de Cloruro/metabolismo , Femenino , Hidrazonas , Técnicas de Placa-Clamp , ortoaminobenzoatos
19.
PLoS One ; 12(1): e0170405, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28114360

RESUMEN

BACKGROUND: The necessity of extracellular Ca2+ for fertilization and early embryonic development in the African clawed frog, Xenopus laevis, is controversial. Ca2+ entry into X. laevis sperm is reportedly required for the acrosome reaction, yet fertilization and embryonic development have been documented to occur in high concentrations of the Ca2+ chelator BAPTA. Here we sought to resolve this controversy. METHODOLOGY/PRINCIPAL FINDING: Using the appearance of cleavage furrows as an indicator of embryonic development, we found that X. laevis eggs inseminated in a solution lacking added divalent cations developed normally. By contrast, eggs inseminated in millimolar concentrations of BAPTA or EGTA failed to develop. Transferring embryos to varying solutions after sperm addition, we found that extracellular Ca2+ is specifically required for events occurring within the first 30 minutes after sperm addition, but not after. We found that the fluorescently stained sperm were not able to penetrate the envelope of eggs inseminated in high BAPTA, whereas several had penetrated the vitelline envelope of eggs inseminated without a Ca2+ chelator, or with BAPTA and saturating CaCl2. Together these results indicate that fertilization does not occur in high concentrations of Ca2+ chelators. Finally, we found that the jelly coat includes >5 mM of readily diffusible Ca2+. CONCLUSIONS/SIGNIFICANCE: Taken together, these data are consistent with requirement of extracellular Ca2+ for fertilization. Based on our findings, we hypothesize that the jelly coat surrounding the egg acts as a reserve of readily available Ca2+ ions to foster fertilization in changing extracellular milieu.


Asunto(s)
Calcio/metabolismo , Fertilización , Xenopus laevis/fisiología , Animales , Quelantes/química , Femenino , Masculino , Interacciones Espermatozoide-Óvulo , Xenopus laevis/embriología
20.
J Biol Chem ; 288(46): 33136-45, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24085296

RESUMEN

The hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are pacemaker channels whose currents contribute to rhythmic activity in the heart and brain. HCN channels open in response to hyperpolarizing voltages, and the binding of cAMP to their cyclic nucleotide-binding domain (CNBD) facilitates channel opening. Here, we report that, like cAMP, the flavonoid fisetin potentiates HCN2 channel gating. Fisetin sped HCN2 activation and shifted the conductance-voltage relationship to more depolarizing potentials with a half-maximal effective concentration (EC50) of 1.8 µM. When applied together, fisetin and cAMP regulated HCN2 gating in a nonadditive fashion. Fisetin did not potentiate HCN2 channels lacking their CNBD, and two independent fluorescence-based binding assays reported that fisetin bound to the purified CNBD. These data suggest that the CNBD mediates the fisetin potentiation of HCN2 channels. Moreover, binding assays suggest that fisetin and cAMP partially compete for binding to the CNBD. NMR experiments demonstrated that fisetin binds within the cAMP-binding pocket, interacting with some of the same residues as cAMP. Together, these data indicate that fisetin is a partial agonist for HCN2 channels.


Asunto(s)
AMP Cíclico/metabolismo , Flavonoides/farmacología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/agonistas , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Canales de Potasio/agonistas , Canales de Potasio/metabolismo , Animales , Sitios de Unión , AMP Cíclico/química , AMP Cíclico/genética , Flavonoides/química , Flavonoles , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/química , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Activación del Canal Iónico/fisiología , Ratones , Resonancia Magnética Nuclear Biomolecular , Canales de Potasio/química , Canales de Potasio/genética , Estructura Terciaria de Proteína , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...